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Abstract. The possibility of parity violation in a gravitational theory with torsion is extensively explored in
four and higher dimensions. In the former case, we have listed our conclusions on when and whether parity
ceases to be conserved, with both two- and three-index antisymmetry of the torsion field. In the latter, the
bulk spacetime is assumed to have torsion, and the survival of parity violating terms in the four dimensional
effective action is studied, using the compactification schemes proposed by Arkani-Hamed–Dimopoulos–
Dvali and Randall–Sundrum. An interesting conclusion is that the torsion–axion duality arising in a stringy
scenario via the second rank antisymmetric Kalb–Ramond field leads to conservation of parity in the gravity
sector in any dimension. However, parity violating interactions do appear for spin-1/2 fermions in such
theories, which can have crucial phenomenological implications.

1 Introduction

Torsion in space-time is an interesting possibility in the-
ories of gravitation. In particular, the presence of matter
fields with spin has often been suggested as a likely source
of torsion. Ever since the Einstein–Cartan (EC) theory was
proposed, the customary way to incorporate torsion has
been to include it as a tensorial extension to the affine
connection, which is antisymmetric in at least two indices.
It has been further pointed out in some recent studies [1,2]
that, once torsion is present, a similar pseudo-tensorial
extension, involving torsion and the completely antisym-
metric tensor density, is also possible. This can, in general,
cause the violation of parity both in the pure gravity sector
(including torsion) and in the coupling of various matter
fields with torsion.

In addition, torsion has sometimes been linked with
string theories, where it is possible to relate torsion to the
rank-2 antisymmetric Kalb–Ramond (KR) field. In such
a case, the field strength tensor corresponding to the KR
field enters in the connection, and it is antisymmetric in
all three indices. The constraints imposed by such com-
plete antisymmetry requires a reappraisal of the scenario,
especially with regard to parity violation.

The motivation of looking for parity violating gravita-
tional interaction emerges from both theoretical and obser-
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vational viewpoints. Einstein’s general relativity is known
to conserve parity. The possibility of a parity violating
extension was pointed out in the usual Einstein–Cartan
framework by extending the Lagrangian density R, i.e the
scalar curvature, by R + εµναβRµναβ , which is the only
possible extension linear in R. Although this new term
vanishes identically for Einstein’s theory, it yields a non-
vanishing parity violating contribution for Einstein–Cartan
theory. In [1,2] it has been pointed out that such a parity
violating term comes naturally if one considers a pseudo-
tensorial extension of the affine connection. In fact there is
no a priori reason to believe that the Cartan extension of
the affine connection must have a definite parity i.e. par-
ity conserving only. Thus getting parity violation in this
way looks more natural. In addition this allows us to study
the coupling of this parity violating term (pseudo-tensorial
extension of the affine connection) with other spin fields
through the usual minimal coupling prescription [1,2]. The
observational motivation emerges from two important re-
sults reported in [3,4]. In [3] it has been shown that a parity
violating gravitational interaction can flip the helicity of
a fermion and thereby provides a possible explanation of
the well-known neutrino anomaly problem. On the other
hand, [4] shows that a parity violating coupling between the
electromagnetic and a scalar field can explain the recently
observed anisotropy in the cosmic microwave background
(CMB) radiation. Indeed the dual scalar of the pseudo-
tensor component of the connection discussed above can
be identified with such a scalar.
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Further investigations have been recently carried out in
the context of theories with large extra dimensions, namely
those of Arkani-Hamed–Dimopoulos–Dvali (ADD) [5] and
Randall–Sundrum (RS) [6]. In such models torsion exists
in the bulk together with gravity, while all the standard
model fields are confined to a three-brane. It has been
demonstrated [7], that a bulk torsion related to the KR
field in ADD type of models has most of its parity vio-
lating effects washed out when one compactifies the extra
dimensions and considers the projection of bulk fields on
the visible brane. In the context of a Randall–Sundrum sce-
nario, very similar conclusions hold in the simplest cases.
However, there one reaches the interesting conclusion that
in spite of having the same status in the bulk as gravity,
effects of the massless mode arising from torsion are heavily
suppressed on the standard model brane, thus creating the
illusion of a torsionless universe [8].

On the whole, the issue of parity violation in non-
torsionfree gravity needs to be addressed in the light of
a number of factors, namely
(1) whether the extension due to the torsion field has an-
tisymmetry in two or three indices;
(2) whether the coupling constants corresponding to the
different pseudo-tensorial extensions are the same or dif-
ferent;
(3) the dimensionality of the space in which torsion is as-
sumed to exist;
(4) whether torsion is introduced minimally (i.e. through
the terms of least order) or non-linear extensions are to be
made if one considers the possibility of parity violation.

In this paper, we present our observations for different
cases arising out of combinations of the above possibilities.
Although some of the individual points have been discussed
earlier in the references given above, an overall perspective
is yet to be provided on this unique feature of gravitational
interactions. Such a perspective is aimed at in this work.

In Sect. 2, we outline the general features of the mecha-
nism of parity violation induced by torsion. An examination
of individual cases in both four and higher dimensions, with
the ways in which the parity violating terms can be con-
structed in each case, is made in Sect. 3. We summarize
and conclude in Sect. 4.

2 Torsion and parity violation

2.1 The framework

The connection in EC theory, denoted by Γ̃µ
νλ, is completely

asymmetric in all its indices. Upon antisymmetrization of
Γ̃µ

νλ in the two lower indices ν and λ, one obtains a tensor
known as “spacetime torsion”:

Hµ
νλ =

1
2

(
Γ̃µ

νλ − Γ̃µ
λν

)
. (1)

Accordingly, Γ̃µ
νλ can be expressed in terms of the symmet-

ric Christoffel connection Γµ
νλ and the torsion as follows:

Γ̃µ
νλ = Γµ

νλ −Kµ
ν λ, (2)

where Kµ
νλ = Hµ

νλ +H µ
λ ν −H µ

νλ is known as the “con-
torsion” tensor, constructed out of the torsion tensor in
order to preserve the metricity condition in EC theory:

D̃ν g
µν = 0, (3)

D̃ being the covariant derivative defined in terms of Γ̃ . The
contorsion tensor is, by construction, antisymmetric in the
first and the third covariant (contravariant) indices.

A straightforward way to introduce parity violation
through the well-known minimal coupling scheme is to
incorporate a pseudo-tensorial extension in the EC con-
nection [1] such that

Γ̃µ
νλ → Γ̃µ

νλ = Γµ
νλ − (Hµ

νλ +H µ
λ ν −H µ

νλ )

− q (∗Hµ
νλ +∗H µ

λ ν −∗H µ
νλ ) , (4)

with ∗Hµ
νλ having opposite parity properties relative to

Hµ
νλ. The parameter q determines the degree of parity vi-

olation, and as a general notation we are using the ∗ for a
pseudo-tensor. In general,H and ∗H may be two completely
different tensors transforming oppositely under spatial par-
ity, but in that case it is always possible to restore parity
through appropriate rephasing of the fields. Therefore, the
only situation where one can have a parity violating grav-
itational field theory is when ∗H is constructed out of H
itself and linearly in the completely antisymmetric permu-
tation tensor ε. For example, in four dimensions, a valid
combination of ε and H creating a ∗Hµ

νλ (antisymmetric in
ν, λ) may be εαβ

νλH
µ
αβ , or εµα

β[νH
β
λ]α, as is shown in [1,2].

2.2 H with two-index antisymmetry

As has been mentioned above, H is antisymmetric in two
indices in the most general case. If parity has to be vio-
lated, then a similar general property has to be attributed
to ∗H as well, since the latter is constructed linearly out of
the former in a minimal construction. In such a case, the
gravitational Lagrangian density, with the surface terms
eliminated, turns out to be composed of two parts trans-
forming oppositely under parity. The parity conserving part
L (pc)

grav and the parity violating part L (pv)
grav are given by

L (pc)
grav = R(g) −Hµ

νλ

(
H νλ

µ − 2Hνλ
µ

) −Hα
αβH

µβ
µ

+O(q2), (5)

L (pv)
grav = −2q

(
Hµ

ν λ
∗H νλ

µ −Hµ
νλ

∗Hνλ
µ

−∗Hµ
νλ H

νλ
µ + 2Hα

αβ
∗H µβ

µ

)
, (6)

whereO(q2) are the additional parity conserving terms aris-
ing in the present scenario; they are of less relevance since
we are primarily interested in the terms bearing opposite
parity properties relative to the original Cartan terms.

It should also be mentioned here that L (pv)
grav above is

identical to the form proposed in an earlier work [9] where
an extra term of the form εαβµν Rαβµν was added to the
original Einstein–Hilbert Lagrangian. However, the present
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scheme gives us in addition a guideline for constructing
parity violating terms involving matter fields with differ-
ent spins.

For a spin-1/2 fermion in a spacetime with torsion, the
extended Dirac Lagrangian density is given by [10]:

Lf
tor = (7)

ψ̄
[
iγµ

(
∂µ − σρβvν

ρgλν∂µv
λ
β − gαδσ

abvβ
av

δ
b Γ̃

α
µβ

)]
ψ,

where vµ
a denotes the tetrad connecting the curved space

with the corresponding tangent space. The above expres-
sion can be decomposed into the terms with opposite parity:

Lf (pc)
tor = Lf

E (8)

− ψ̄
[
iγc gαδσ

abvµ
c v

β
av

δ
b

(
Hα

µβ +H α
β µ −H α

µβ

)]
ψ,

Lf (pv)
tor = (9)

− qψ̄
[
iγc gαδσ

abvµ
c v

β
av

δ
b

(∗Hα
µβ +∗H α

β µ −∗H α
µβ

)]
ψ,

Lf
E being the Dirac Lagrangian density in Einstein grav-

ity. Thus explicit parity violation appears through the term
Lf (pv)

tor when a spin-1/2 fermion couples to the background
torsion. Just a two-index antisymmetry in the torsion ten-
sor is thus sufficient to ensure parity violation in both the
pure gravity sector and in the Lagrangian of spin-1/2 par-
ticles.

The coupling of torsion with a spin-1 Abelian gauge field
Aµ, however, runs into problems in maintaining gauge in-
variance. This is because the corresponding field strength
F̃µν = D̃[µAν] is not invariant under U(1) gauge transfor-
mation. This has been a persistent difficulty for torsion with
two-index antisymmetry, so long as one wants to remain
within the minimal coupling scheme. In a string theoretic
scenario, however, this problem can be handled in a manner
to be discussed below.

2.3 H with three-index antisymmetry

A torsion tensor H with complete antisymmetry in all
its indices may be identified with the field strength cor-
responding to the second rank antisymmetric tensor field
Bµν appearing in the massless sector of heterotic string
theory. Starting from the Einstein–Cartan action in such
an antisymmetric tensor field background one can use the
equation of motion for torsion to identify torsion with the
KR field strength and trade away the torsion from the
action [11].

To cancel the U(1) gauge anomaly and preserve N =
1 supersymmetry in the heterotic string theory the field
strengthHµνλ is augmented suitably with a Chern–Simons
(CS) term A[µFνλ] (F being the field strength of a U(1)
gauge field A):

Hµνλ = ∂[µBνλ] +A[µ∂νAλ]. (10)

Using this Chern–Simons augmented field strength Hµνλ

we consider the low energy field theory limit of the bosonic

sector of the toroidally compactified string theory. It has
been shown [11] that in such a theory a CS term plays
the crucial role in resolving the problem of U(1) gauge
invariance mentioned above. This is easy to verify since
Hµνλ as defined above is invariant under the U(1) gauge
transformation δAµ = ∂µω and δBµν = ω Fµν [11].

Now, one canagainhave apseudo-tensor ∗H constructed
out of the permutation tensor ε andH and write in general
the torsion as Hµνλ + q ∗Hµνλ. The sum as a whole need
not be totally antisymmetric, as ∗H can be antisymmetric
only in a pair of indices although Hµνλ is antisymmetric
in all the three indices. Such a construction is explicitly
shown in the following section, where we shall also state
the specific conditions for retaining parity violating effects
in different sectors. Due to the presence of the CS term,
the Einstein–Cartan–Kalb–Ramond (ECKR) Lagrangian
density involves the gauge field A. Therefore, following the
formalism in [11] we can express the Lagrangian density
for the ECKR–gauge field coupling as

Lgauge
ECKR = R(g) − 1

12
(Hµνλ + q ∗Hµνλ)(Hµνλ + q ∗Hµνλ)

−1
4
FµνF

µν . (11)

The Lagrangian density for the ECKR–fermion cou-
pling is given by

Lf
ECKR = Lf

E − ψ̄
[
iγcgαδσ

abvµ
c v

β
av

δ
b (12)

× {
Hα

µβ + q
(∗Hα

µβ +∗H α
β µ −∗H α

µβ

)}]
ψ.

3 Construction of ∗H in different dimensions

3.1 The general outlook

So far we have discussed in a general way the possibility of
parity violation arising from ∗H. Now we shall concentrate
on various ways of constructing ∗H out of H in different
spacetime dimensions.

Depending on thedimensionality, ∗H canbe constructed
using linear as well as higher powers of H. In particular,
it is straightforward to see that
(a) in even spacetime dimensions (4, 6 . . .) ∗H must be
constructed using an odd number of the H, i.e., ∗H is
linear, cubic, . . . in the H;
(b) in odd spacetime dimensions (5, 7, . . .) ∗H must contain
an even number of the H and therefore can be bilinear,
quadrilinear, . . . in H.

Note that since the three-form H is equal to dB+A∧
F , dimensional arguments tell us that an ∗H constructed
out of higher powers of the H gives parity violating ef-
fects suppressed by correspondingly higher powers of the
Planck mass.

3.2 Construction of ∗H in four dimensions

3.2.1 Minimal construction

We now consider anH which is totally antisymmetric in all
three indices. In four dimensions, a minimally constructed
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∗H consists of terms linear in H, whence the pseudo-
tensorial connection can generically be written as [2]

q ∗Hµ
νλ = q1 ε

αβ
νλ H

µ
αβ + q2 ε

µσ
ρ[ν H

ρ
λ]σ. (13)

However, if the coupling strengths q1 and q2 are equal
(which is the situation corresponding to complete anti-
symmetry in the pseudo-connection), the above expression
vanishes identically as a whole. This can be verified eas-
ily on observing that one can always replace the totally
antisymmetric three-tensor Hµνλ – a three-form – by its
Hodge-dual one-form, i.e., a pseudo-vector hσ, as follows:

Hµνλ = εµνλσ h
σ. (14)

Therefore q1 and q2 must always differ, which implies that
we are left with the case where the term ∗Hµ

νλ is antisym-
metric in ν and λ only. This is not an unnatural assumption,
since there is no symmetry of the theory demanding the
equality of the two charges.

Even with q1 and q2 unequal, a rather interesting thing
is observed. If one considers the parity violating part of the
gravity sector (see (6)) and uses the above duality relation,
it is straightforward to see that L(pv)

grav = 0 identically. Thus
a Kalb–Ramond type of torsion cannot violate parity in
the effective scalar curvature.

A similar conclusion follows for Abelian gauge fields,
too. The gauge-invariant ECKR-Lagrangian density along
with the gauge field A (see (11)) can now be separated
into parity conserving (pc) and parity violating (pv) parts
as follows:

Lgauge (pc)
ECKR = R(g) − 1

4
FµνF

µν

− 1
12

(
∂[µBνλ] +A[µFνλ]

) (
∂[µBνλ] +A[µF νλ]

)

+ O(q1, q2)2, (15)

Lgauge (pv)
ECKR = − 1

6
(q1 + 2q2) (16)

× ερα
βσ

(
∂[λBρα] +A[λFρα]

) (
∂[λBβσ] +A[λF βσ]

)
.

However, once again the relation (14) can be employed
to check that the parity violating term Lgauge (pv)

ECKR vanishes
identically. This is because all the terms, including those
from the Chern–Simons extension, are three index antisym-
metric and therefore dual to a vector in four dimension by
the relation (14). So our conclusion is that the theory is
parity conserving in both the gravity and electromagnetic
sector even for q1 �= q2.

It is worth mentioning here that in a recent work [12],
it has been argued that there can be an alternative way of
incorporating parity violation in the coupling of the gauge
field with torsion by extending the Chern–Simons term in
the modified field strengthHµνλ by the dual of the Maxwell
field tensor Fµν . Such a term generates a parity violating
interaction between the gauge field and the torsion.

Once the torsion tensor is identified with the KR field,
the pseudo-tensorial extension of the connection makes the

KRcoupling to a spin-1/2 fermion parity violating. In terms
of the axion that appears in the string spectrum and that
is defined through the duality relation

∂[µBνλ] = εµνλσ ∂
σ φ, (17)

the Lagrangian density in the fermionic sector is given by

Lf
ECKR = Lf

E

+ 8 (q1 − q2) ψ̄
(
iγc σ

ab vλ
av

µ
b v

ν
c gνλ ∂µ φ

)
ψ

+ ψ̄
(
iγc σ

ab vλ
av

µ
b v

ν
c (18)

×
[
2q1 ε

αβ
νλ A[αFβµ] − (q1 − 2q2) εαβ

µν A[αFβλ]

])
ψ.

This Lagrangian density is manifestly parity violating,
through both the axion φ and the CS term. Thus fermionic
interactions constitute the benchmark of parity violation
induced by torsion of the above kind, albeit with the spe-
cial requirement q1 �= q2. Moreover, due to the presence
of the CS term in the connection, an interaction between
the gauge field and the fermion appears. Though the term
is suppressed by two powers of the Planck mass, such an
interaction may be interesting for future studies.

Before we move on to the next topics, we summarize
below our main conclusions on parity violation with torsion
in four dimensions, with the pseudo-tensorial extension al-
ways kept linear in H.
(1) When the torsion tensor is antisymmetric only in the two
lower indices (i.e. in a model-independent representation
of torsion), parity violation is always observed both in the
pure gravity sector (i.e. in the effective scalar curvature)
and in the coupling of matter fields to torsion. However,
the coupling of torsion to massless gauge fields is difficult
to ensure unless one goes beyond the minimal scenario.
(2) When the torsion tensor is antisymmetric in all three
indices (i.e. one can write it both as the strength of the
antisymmetric Kalb–Ramond tensor field and as the dual
of a pseudoscalar field), the pseudo-tensorial extension ∗H
identically vanishes so long as it is also constructed as anti-
symmetric in all three indices. Thus there is no possibility
of parity violation in such a case.
(3) When the torsion tensor is antisymmetric in all three
indices, it is still possible to have only a two-index anti-
symmetry in the pseudo-tensorial part ∗H, by imposing
inequality of the two couplings q1 and q2. In such a case,
too, the gravity sector and the gauge field sector still turn
out to be parity conserving. However, spin-1/2 fields have
a parity violating coupling with torsion in such a case.

3.2.2 Non-minimal construction

We have already seen that no parity violation occurs in
the gauge and gravity sectors for the minimal (linear) ex-
tension in four dimensions. Here we look for the possibility
of parity violation in these sectors with the leading non-
minimal terms in the extension. As mentioned earlier, in
four dimensions, a pseudo-tensor ∗H constructed using H
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can, in general, have terms containing only odd powers of
H. Therefore, the most general pseudo-tensorial part of
the affine connection can be schematically expressed as

∗H = εH + ε HHH + ε HHHHH + . . . (19)

The set of possible terms trilinear in R (suppressing the
charges multiplying the various terms) in the above ex-
pression is given by

εαβ
νλ H

µ
αρ H

σκ
β H

ρ
σκ + εαβ

ρ[ν H
σ
λ]κ H

ρκ
σ H

µ
αβ

+ εαµ
βρ H

βσ
[ν H

κ
λ]α Hρ

σκ

+ εαµ
βρ H

β
νλ H

ρσ
κ H

κ
ασ + similar terms. (20)

In the special case of a completely antisymmetric pseudo-
tensorial connection, there are a number of allowed terms
for each non-minimal order construction. However, similar
to the minimal construction case, terms of each variety
in the non-minimal construction can be shown to vanish
on using the general relation (14). Thus we can make the
following generic statement: it is, in no way, possible in a
four dimensional Lagrangian to have a pseudoscalar term
built out of completely antisymmetric three-tensors raised
to any index.

When the fieldH is only two-index antisymmetric then
the non-minimal extensions no longer vanish. However, it
can be explicitly checked that no parity violating term in
the Lagrangian density in four dimensions appears either in
the gravity sector or in the coupling with the gauge fields up
to a term trilinear in H in the connection. In the fermionic
sector, parity violating terms from the non-minimal exten-
sions do appear in the Lagrangian density. However, such
terms are hardly of any significance as they are suppressed
by increasingly higher powers of the Planck mass.

3.3 Construction of ∗H in five dimensions

Considering that torsion (or, equivalently, the KR field)
coexists alongside gravity in the bulk, we find that in five
dimensional spacetime the pseudo-tensor ∗H constructed
from H has to be at least bilinear in the latter. The most
general pseudo-tensorial part of the affine connection, an-
tisymmetric in a pair of indices, can now be written as

∗Hµ′
ν′λ′

=
(
q1 εα′β′γ′ν′λ′Hµ′α′δ′

+ q2 ε
µ′

α′β′γ′[ν′H
α′δ′

λ′]

)
Hβ′γ′

δ′

+
(
q3 ε

µ′
α′β′γ′δ′H

α′
ν′λ′ + q4 εα′β′γ′δ′[ν′H µ′α′

λ′]

)
Hβ′γ′δ′

+ q5 εα′β′γ′δ′[ν′H α′β′

λ′] Hµ′γ′δ′
, (21)

where the primed indices µ′, ν′, . . ., etc. run all over both
the usual four-dimensional spacetime and the extra space
dimension y. The coupling strengths q1, q2, q3, q4 and q5
are, in general, different from each other, thereby leaving
∗H to be antisymmetric in two indices. The special case of a

totally antisymmetric pseudo-tensor ∗H canbe encountered
if we set q1 = −q2, q3 = q4 and put q5 = 0. Unlike in four
dimensions, here the totally antisymmetric ∗H gives a
non-vanishing contribution to the connection.

With this modified connection in five dimensions, we
now examine the parity violating effect in the effective
four dimensional theory with two compactification mech-
anisms, viz., Arkani-Hamed–Dimopoulos–Dvali (ADD) [5]
and Randall–Sundrum (RS) [6]. We compute the parity
violating part of the four dimensional Lagrangian density
for these two compactification schemes. For the sake of
convenience we consider here only the terms multiplying
the q1 and q2 terms of (21), with q1 �= q2 in general. The
conclusions are, however, not affected by this simplifica-
tion.

3.3.1 Compactification in ADD scenario

Although the ADD type of models are phenomenologically
disfavored in five dimensions, we include it here for com-
pleteness. In such a model [5], the compact and Lorenz
degrees of freedom can be factorized and the string scale
Ms (expected to lie between a few TeV and a few tens
of TeV) controls the strength of gravity in (4 + n) dimen-
sions.Ms is related to the four dimensional Planck scaleMP
by Mn+2

s /M2
P ∼ R−n, R being the compactification ra-

dius. Compactification of the n extra dimensions leads to a
tower of Kaluza–Klein (KK) modes on a visible three-brane
and as such amassless field in the bulk gives rise to amassive
spectrum m2

n = 4π2n2/R2 with n = (n1, n2, . . . , nn) [13].
In a physical process, the summation over these towers of
fields, convoluted with the corresponding density of states,
causes an enhancement, despite anMP-suppression of indi-
vidual coupling. Thus “new physics” is found to intervene
at the TeV scale, thereby providing a natural cut-off to the
electroweak theory.

For a bulk KR field Bµ′ν′ , the ADD compactification
in general gives rise to a set of tensor fields Bn

µν , vector
fieldsBn

µ and scalar fields χn in a four dimensional effective
theory. However, one can assume the bulkBµ′ν′ to be block-
diagonal in compact and non-compact dimensions [7], i.e.,
Bn

µ can be taken to be zero without any loss of general-
ity. Now, following the standard toroidal compactification
procedure shown in [13], we obtain the four dimensional
effective parity violating part of the Lagrangian density for
KR–fermion coupling:

L (pv)
f

= 2q1 ψ̄


 ∑

n,n′,m,m′
iγcσabv

a
µε

αβbc

{
2πi
R

n gµρ(m) gνσ(m′)

×
(
B(n)

νρ ∂[αB
(n′)
βσ] + 2B(n)

σβ ∂[ρB
(n′)
αν]

)

−4π2

R2 nn′ gµρ(m) ζν(m′)
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×
(
B(n)

νρ B
(n′)
αβ + 2B(n)

ρα B
(n′)
σβ

)}
 ψ

+
q1 + 2q2

2
ψ̄


 ∑

n,n′,m

γcσabγ5vα
a v

β
b v

λ
c

{
2πi
R

n gνσ(m)

×
(
B

(n)
νλ ∂[αB

(n′)
βσ] + 2B(n)

σβ ∂[λB
(n′)
αν]

)

− 4π2

R2 nn′ ζσ(m)
(
B

(n)
σλ B

(n′)
αβ + 2B(n)

λα B
(n′)
σβ

)}
 ψ, (22)

where ζσ(n) = gσy(n) (where y stands for the extra dimen-
sions), and with the contributions due to the CS terms
which are suppressed by higher powers of Planck mass in
the above expression.

3.3.2 Compactification in the RS scenario

In the RS framework, we have a non-factorizable geometry
and as such the metric contains a so-called “warp” factor
which is an exponential function of the compact space
dimension y:

ds2 = e−2krc|y|ηµνdxµdxν − r2cdy
2, (23)

where rc is the compactification radius on aZ2 orbifold, and
k ∼ M5, the higher dimensional Planck mass. For the bulk
KR field Bµ′ν′ in this scenario, one can use the standard
decomposition technique used, for example, in [14]:

Bµ′ν′(x, y) =
∑

n

B
(n)
µν (x)√
rc

ξ(n)(y), (24)

which, on the visible brane, is given by

Bµν(x) =
∑

n

B
(n)
µν (x)√
rc

ξ(n)(π). (25)

The couplings are controlled by appropriate warp factors
arising from ξ [14]. The four dimensional effective parity
violating part of the Lagrangian density for KR–fermion
coupling in this case is given by

L (pv)
f = −2q1

r3c
ψ̄

[
iγcσab e6πkrc ηαρηβσηδκ εαβbc

×
∑
n,n′

{
B

(n)
δa ∂[ρB

(n′)
σκ] ξ

′(n)(π)ξ(n
′)(π)

+∂[aB
(n)
ρδ]B

(n′)
κσ ξ(n)(π)ξ′(n′)(π)

}]
ψ

− q1 + 2q2
2r3c

ψ̄
[
γcσabγ5 e6πkrc ηaρηbσηδκ

×
∑
n,n′

{
B

(n)
δc ∂[ρB

(n′)
σκ] ξ

′(n)(π)ξ(n
′)(π)

+∂[cB
(n)
ρδ]B

(n′)
κσ ξ(n)(π)ξ′(n′)(π)

}]
ψ. (26)

where ξ′(n)(π) = dξ(n)/dy |(y=π).
It should be mentioned in this context that a five di-

mensional scenario also admits of an additional term of
the form

L pv
HB = MP εµνλαβHµνλBαβ . (27)

Such a term is invariant under the Kalb–Ramond gauge
transformation δBµν = ∂[µων], modulo a divergence term.
However, it is not invariant under the U(1) gauge transfor-
mation of the KR field, which we have introduced to justify
the Chern–Simons terms defined earlier. Therefore, a term
of this form survives only if torsion does not couple to
electromagnetism, at least through a Chern–Simons term.

Once a term of this kind exists, one hopes to generate
a parity violation in four dimensions when the fifth dimen-
sion is compactified à la Randall–Sundrum. However, it is
found that the presence of such a term makes the Bµν field
selfdual or anti-selfdual and the resulting four dimensional
action conserves parity. We shall report the details of such
a scenario in a forthcoming paper.

3.4 Construction of ∗H in six dimensions

The construction of ∗H in six dimensions can only be com-
pletely antisymmetric in all covariant (contravariant) in-
dices [7]: ∗Hµ′ν′λ′ = εα

′β′γ′
µ′ν′λ′Hα′β′γ′ . As has been the

cases in four and five dimensions, if one calculates here the
parity violating part of the EC–KR–Maxwell Lagrangian,
i.e., the term ∗Hµ′ν′λ′

Hµ′ν′λ′ , it turns out to be zero again.
Moreover, for the KR–fermion coupling, it has been shown
explicitly in [7] that, although the augmentation of the
covariant derivative with the pseudo-tensorial part in the
presence of torsion causes parity violation in the bulk, the
ensuing theory in four dimensions turns out to be parity
conserving. This can be understood from the fact that,
upon an ADD type compactification, one can obtain the
following KR coupling to the spin-1/2 fermion of mass m:

Lf = LE
f +M−1

P

∑
n

ψ̄
(
iγµσνλ ∂[µB

n
νλ]

)
ψ

− 144qm
MP

ψ̄ iγ5χ ψ, (28)

where LE
f is the four dimensional Dirac Lagrangian in Ein-

stein gravity, q being the charge of the pseudo-connection
and χ the scalar field in the KK spectrum for Bµ′ν′ . From
the viewpoint of a parity transformation in four dimen-
sions, this Lagrangian is invariant, since we can always use
the phase freedom of the fields Bn

µν and χ independently
on the three-brane. It has also been argued in [7] that the
above feature of getting no parity violation in any sector
in six dimensions holds in a RS framework as well.

4 Summary and conclusions

We have made a general survey of the role of spacetime
torsion as a possible source of parity violation, evinced from
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its interaction with both curvature and various spin fields.
We have shown that while a completely antisymmetric
torsion (originating from a Kalb–Ramond field in a string
inspired model) can induce parity violation only in the spin-
1/2 fermion sector but not in the curvature or U(1) gauge
sector. A two-index antisymmetric torsion can however
violate parity in all spin sectors.

We have also generalized these results into higher space-
time dimensions. These results are specially significant in
studying parity violation in phenomenological models orig-
inating from D-branes. Postulating the existence of torsion
(identified with the KR field) in the bulk in each case, we
still find that parity is always restored when one considers
its coupling to curvature. On the other hand, the fermionic
sector is seen to violate parity in the resulting four dimen-
sional theory obtained upon compactification of the extra
dimensions à la Randall–Sundrum and ADD. In each of the
above cases, all the parity violating couplings are explicitly
calculable. These parity violating couplings may turn out
to be phenomenologically significant in the context of solar
neutrino problem [3].

We conclude with the observation that the curvature
(or gravity) sector and electromagnetic sector are always
seen to be shielded from parity violating effects whenever
the torsion tensor is fully antisymmetric in all three indices.
This, in turn, is traced to the fact that such a tensor can
always be expressed in terms of its dual axion field. Thus
parity conservation in gravity, space-time torsion notwith-
standing, has a rather striking relationship with duality.
We have thus exhaustively described the possibilities of
generating parity violating interactions through spacetime
torsion with special emphasis on string inspired models.
Various phenomenological implications of the results pre-
sented in this work may now be investigated for (3 + 1)
dimensional as well as higher dimensional theories. It may
be noted from (4) that q measures the relative strength
between the parity conserving and parity violating part
in the Cartan extension of the affine connection. Thus to
determine q one must look into phenomena originating
from both the parity violating and parity conserving part.
Calculating the helicity flip amplitude from left handed to
right handed neutrino and the resulting change of flux of
the incoming left handed solar neutrino [3] we can com-
pare this to the experimental data to estimate the parity
violating component. The parity conserving part does not
contribute in this process. Data from CMB anisotropy can
also be used to determine the parity violating part [15].
Moreover the experimental value of the optical rotation
of the plane of polarization of the distant galactic polar-
ized radiations, over and above the usual Faraday rotation,
may be used to determine both the parity conserving as
well as parity violating components [16]. For the higher

dimensional theories like ADD, the scenario (22) indicates
that only the massive Kaluza–Klein tower of the KR field
contributes in the KR–fermion interaction term whereas
in the RS scenario, (26) implies that both the massless as
well as the massive modes of the KR field interact with
the fermions. As the massless mode in the RS scenario is
shown to be suppressed by the large warp factor on the
visible brane [8], the massive KR modes in these higher
dimensional theories are expected to play crucial roles in
the forthcoming TeV scale experiments.
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